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Constrained systems are common in physics, and their dynamics can be advantageously 
solved by the Lagrangian method.  Examples include the pendulum, the Atwood machine, a 
rigid body, gas particles trapped in a box, a rolling object, and a bead on a wire.  We 
considered the pendulum problem in detail.  The constraint is that the length of the pendulum 
ℓ is fixed, so that the x- and y-coordinates of the bob are not independent, but constrained so 
that ℓ = �𝑥2 + 𝑦2.  We can elegantly incorporate this constraint by adopting a new 
independent variable to describe the position of the bob, namely the angle that the pendulum 
makes with the vertical, 𝜙.  In terms of this generalized coordinate, the Lagrangian becomes 
ℒ�𝜙, 𝜙̇� = 𝑚

2
ℓ2𝜙̇2 − 𝑚𝑚ℓ(1 − cos𝜙).  Lagrange’s equation gives −𝑚𝑚ℓ sin𝜙 = 𝑚ℓ2𝜙̈, 

which relates the torque due to gravity on the bob to the time rate of change of the angular 
momentum of the bob, or the moment of inertia (𝑚ℓ2) times the angular acceleration (𝜙̈).  
Note that the force of constraint (namely the tension in the rod supporting the bob) never 
played a role in the analysis (whereas it plays an important role in the traditional Newtonian 
approach).  Once the appropriate generalized coordinate is identified, the associated 
constraining force disappears from the discussion! 

Generalized coordinates and constrained systems are important for Lagrangian dynamics.  
Consider a system consisting of N particles, with positions 𝑟𝛼���⃗ , with 𝛼 = 1, …𝑁.  The 
parameters 𝑞1, 𝑞2, … 𝑞𝑛 are a set of generalized coordinates if each position 𝑟𝛼���⃗  can be 
expressed as a function of 𝑞1, 𝑞2, … 𝑞𝑛, and possibly time t as, 𝑟𝛼���⃗ = 𝑟𝛼���⃗ (𝑞1,𝑞2, … 𝑞𝑛, 𝑡)for 
𝛼 = 1, …𝑁, and the inverse 𝑞𝑖 = 𝑞𝑖(𝑟1���⃗ , 𝑟2���⃗ , … 𝑟𝑁����⃗ , 𝑡) for 𝑖 = 1, 2, …𝑛 can also be written.  For 
particles in three dimensions, 𝑛 ≤ 3𝑁.  If 𝑛 < 3𝑁, then the system is said to be constrained.  
The number of degrees of freedom of a system is the number of coordinates that can be 
independently varied in a small displacement.  The simple pendulum is constrained and has 
one degree of freedom.  The double pendulum is constrained and has two degrees of 
freedom.  One can show (the proof is in Taylor, section 7.4) that constrained systems with 
holonomic constraints obey the Lagrange equations when their Lagrangian is written in terms 
of the generalized coordinates of the system.  Holonomic constraints are those which impose 
relations between only the coordinates of the system.  Non-holonomic constraints cannot be 
reduced to relations only between the coordinates.  For example consider a rolling wheel on a 
fixed surface – the rolling constraint says that the velocity at the point of contact is zero.  
This is a condition on a quantity other than the coordinates of the particles. 

We discussed several examples of constrained systems by the Lagrangian method.  The 
key step is to identify the number of degrees of freedom in the problem and find the most 
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efficient set of generalized coordinates.  Examining the constraints in the system is often a 
good way to identify the appropriate generalized coordinates.  Writing down the kinetic and 
potential energies in terms of these generalized coordinates is often facilitated by using 
Cartesian or cylindrical or spherical coordinates, and then converting completely to the 
generalized coordinates.   

We did the example of the Atwood machine for a frictionless and inertia-less pulley 
supporting two different masses.  The masses can each move in one dimension (which we 
called x and y), and their motion is constrained because they are on either end of a string of 
fixed length.  The constraint is that the string length is ℓ = 𝑥 + 𝑦 + 𝜋𝜋, where 𝑅 is the radius 
of the pulley.  With this constraint incorporated, the Lagrangian can be written as ℒ(𝑥, 𝑥̇) =
1
2

(𝑚1 + 𝑚2)𝑥̇2 + (𝑚1 −𝑚2)𝑔𝑔 + 𝑐𝑐𝑐𝑐𝑐.  Note that the constant plays no role in the 

dynamics since it disappears when any of the derivatives (𝜕ℒ
𝜕𝜕

, 𝜕ℒ
𝜕𝑥̇

, 𝑑
𝑑𝑑

) are taken.  The resulting 

equation of motion is 𝑥̈ = 𝑔𝑚1−𝑚2
𝑚1+𝑚2

.  Again note that the constraining force (the tension in the 

string) was never mentioned or considered in the process.  The tension is essential to the 
traditional Newton’s second law approach to solving this problem. 

We then looked at the pendulum whose point of suspension is forced to rotate on a circle 
of radius 𝑅 at a fixed angular velocity 𝜔.  The key step is to write down the (𝑥, 𝑦) 
coordinates of the bob in terms of a minimum number of parameters and generalized 
coordinates.  We did this by describing the location of the bob starting from the center axis of 
the circle (chosen to be the origin) and describing the location of the point of suspension, and 
then adding the vector position of the bob relative to the point of suspension.  The location of 
the particle is specified by a single variable, 𝜑, which describes the deviation of the bob from 
the vertical.  This location (𝑥,𝑦) was then differentiated with respect to time to get the vector 
velocity (in terms of 𝜑, 𝜑̇, and time 𝑡), and the kinetic energy was constructed from that.  
The potential energy is entirely due to gravity, so the Lagrangian can be constructed.  The 
Euler-Lagrange equation yields the equation of motion for the single generalized coordinate 
𝜑.  The resulting motion can be quite complicated, and we will study the development of 
chaos in the driven damped pendulum later in the semester. 


